skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Geochemical evidence concerning the nature of the source region to the Middle Proterozoic Granite-Rhyolite Province

Conference · · Geological Society of America, Abstracts with Programs; (United States)
OSTI ID:5724847
 [1]; ;  [2]
  1. Univ. of Nebraska, Omaha (United States). Dept. Geography/Geology
  2. Univ. of Florida, Gainesville, FL (United States). Dept. Geology

The mostly buried 1.5--1.3 Ga old Granite-Rhyolite Province of the midcontinent of North America, is characterized by extensive, undeformed silicic volcanic rocks and related epizonal granitic plutons. Thirty-three previously dated samples from a wide geographic range (Michigan to Colorado) have been analyzed to determine their chemical and Nd and Pb isotopic compositions in order to constrain source regions and processes involved in the formation of these rocks. Major and trace element analyses of these rocks indicate their anorogenic nature, with relatively high Ce/Nb and Y/Nb ratios, as well as relatively high Ga/Al ratios. Geochemically, these rocks are similar to the A2 granites of Eby (1992), which are thought to be generated from the melting of crust which has experienced at least one cycle of subduction-related magmatism. Rare earth element and Pb isotopic data suggest melting at middle to shallow depths. The isotopic data (Nd and Pb) indicate little to no contribution of Archean crust to the source of these rocks. Initial Pb isotopic ratios (208Pb/204Pb) suggest a low Th/U ratio in the source, which contrasts strongly with high Th/U ratios of the Wyoming Province. The Pb isotopic ratios for these rocks are variable, but cluster about the orogene plumbotectonics curve. The variability in the data suggest sources which are variable in their U/Pb ratios and/or ages. The isotopic data are consistent with the existence of a proposed lithospheric boundary which trend NE-SW through the Granite-Rhyolite Province and separates 1.65 Ga old lithosphere (to the NW) from 1.5 Ga old lithosphere (to the SE). Samples analyzed from either side of this boundary have different isotopic signatures. Many of the samples appear to be derived from sources which are only slightly older than the crystallization ages of the granites themselves.

OSTI ID:
5724847
Report Number(s):
CONF-921058-; CODEN: GAAPBC
Journal Information:
Geological Society of America, Abstracts with Programs; (United States), Vol. 24:7; Conference: 1992 annual meeting of the Geological Society of America (GSA), Cincinnati, OH (United States), 26-29 Oct 1992; ISSN 0016-7592
Country of Publication:
United States
Language:
English