skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dissociative attachment reactions of electrons with strong acid molecules

Journal Article · · J. Chem. Phys.; (United States)
DOI:https://doi.org/10.1063/1.450675· OSTI ID:5679282

Using the flowing afterglow/Langmuir probe (FALP) technique, we have determined (at variously 300 and 570 K) the dissociative attachment coefficients ..beta.. for the reactions of electrons with the common acids HNO/sub 3/ (producing NO/sup -//sub 2/) and H/sub 2/SO/sub 4/ (HSO/sup -//sub 4/), the superacids FSO/sub 3/H (FSO/sup -//sub 3/), CF/sub 3/SO/sub 3/H (CF/sub 3/SO/sup -//sub 3/), ClSO/sub 3/H (ClSO/sup -//sub 3/,Cl/sup -/), the acid anhydride (CF/sub 3/SO/sub 2/)/sub 2/O (CF/sub 3/SO/sup -//sub 3/), and the halogen halides HBr (Br/sup -/) and HI (I/sup -/). The anions formed in the reactions are those given in the parentheses. The reactions with HF and HCl were investigated, but did not occur at a measurable rate since they are very endothermic. Dissociative attachment is rapid for the common acids, the superacids, and the anhydride, the measured ..beta.. being appreciable fractions of the theoretical maximum ..beta.. for such reactions, ..beta../sub max/. The HI reaction is very fast ( ..beta..approx...beta../sub max/) but the HBr reaction occurs much more slowly because it is significantly endothermic. The data indicate that the extreme acidity of the (Bronsted-type) superacids has its equivalence in the very efficient gas-phase dissociative attachment which these species undergo when reacting with free electrons. The anions of the superacids generated in these reactions, notably FSO/sup -//sub 3/ and CF/sub 3/SO/sup -//sub 3/, are very stable (unreactive) implying exceptionally large electron affinities for the FSO/sub 3/ and CF/sub 3/SO/sub 3/ radicals.

Research Organization:
Department of Space Research, University of Birmingham, Birmingham B15 2TT, England
OSTI ID:
5679282
Journal Information:
J. Chem. Phys.; (United States), Vol. 84:12
Country of Publication:
United States
Language:
English