skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Marine geology of the hess rise, 1, bathymetry, surface sediment distribution, and environment of deposition

Journal Article · · J. Geophys. Res.; (United States)

New charts of bathymetry, acoustic character, and sediment distribution describe the Hess Rise, a large oceanic plateau in the central north Pacific. Discrete physiographic provinces on the Hess Rise are the High Plateau, shallower than 3900 m, trending N30/sup 0/W; the Northeastern Flank, a smooth, gentle slope gradually increasing in depth to the northeast; the Woollard Abyssal Plain, extending farther to the northeast; the Volcanic Province with its high peaks and ridges along the southern margin of the Hess Rise; the Mendocino Fracture Zone to the south, expressed by broad, planar seafloor regions bordered by ridges and scarps; the Western Steps, formed by structural benches on the western side of the Rise; and the Emperor Deep, between the rise and the Emperor Seamounts. Five types of acoustic units have been mapped and interpreted: a transparent layer, predominantly of biosiliceous pelagic clay; a stratified layer, predominantly of nannofossil ooze; a diffuse layer of debris flows that seem to have originated mostly in the Volcanic Province; an opaque horizon commonly formed of volcaniclastic sediments that are usually found on the seafloor of the Mendocino Fracture Zone; and a hyperbolic horizon, indicating outcrops of igneous rock. The pronounced effect of bottom currents on the present-day environment of deposition in the Hess Rise is evidenced by the presence of the opaque horizon, which is interpreted as an erosion surface, and by current moating, abrupt thinning of surface layers and truncation of subbottom reflectors. The widespread erosion on the seafloor of the Mendocino Fracture Zone is attributed to the flow of Antarctic bottom water.

Research Organization:
Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822
OSTI ID:
5671565
Journal Information:
J. Geophys. Res.; (United States), Vol. 86:B11
Country of Publication:
United States
Language:
English