skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cooperative mixtures of bispecific F(ab')2 antibodies for delivering saporin to lymphoma in vitro and in vivo

Journal Article · · Cancer Research; (United States)
OSTI ID:5670108

We report that selected combinations of two or more monoclonal bispecific F(ab')2 antibodies (BsAbs) far outperform single derivatives in the delivery of the ribosome-inactivating protein, saporin, to guinea pig L2C leukemic cells. Throughout the work, BsAbs were constructed by thioether-linking the hinges of two Fab'gamma, one from monoclonal anti-L2C-idiotype antibody and the other from anti-saporin antibody. The latter was either affinity-purified rabbit polyclonal or one of a panel of five mouse monoclonal antibodies. In vitro cytotoxicity studies showed that, though all derivatives were effective, the BsAb made with the polyclonal antibody was always 10 to 20 times more potent than those made with a monoclonal antibody in yielding 50% inhibition of (3H)leucine uptake. This superior activity could be matched by selective mixtures of two or more of the monoclonal derivatives. Furthermore, in immunotherapeutic delivery of saporin to tumor, a pair of BsAbs performed significantly better than did either individually. Binding and uptake studies with radiolabeled saporin demonstrated a 20-fold increase in functional affinity when saporin was held at the cell surface by an appropriate BsAb mixture rather than by a single BsAb. In contrast, only small differences were recorded in the rate at which saporin was internalized as a result of the same maneuver. We conclude that the improved performance of combinations of BsAbs arises from their ability to provide multiple linkages between saporin molecules and cell surfaces, increasing the functional affinity with which saporin is tethered to the cell, but, in this system at least, having only a minor effect on the rate at which it is internalized. Cocktails of two or more BsAbs, selected to bind to multiple epitopes on ribosome-inactivating proteins could provide an important new strategy in immunotherapy.

OSTI ID:
5670108
Journal Information:
Cancer Research; (United States), Vol. 51:9; ISSN 0008-5472
Country of Publication:
United States
Language:
English