skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation of the nonreacting flow in a bluff-body burner; effect of the diameter ratio

Journal Article · · Journal of Fluids Engineering; (United States)
DOI:https://doi.org/10.1115/1.2910163· OSTI ID:5617831
;  [1]
  1. Massachusetts Inst. of Tech., Cambridge, MA (United States)

Axisymmetric vortex simulation is used to study the unsteady dynamics of the flowfield generated by the interaction between two concentric jets initially separated by a thick bluff-body. The computational scheme treats convective transport in a Lagrangian sense by discretizing the vorticity into a number of finite-area vortex ring elements which move along particle trajectories during each convective substep, thus reducing the numerical diffusion and allowing simulations at high Reynolds number. In this paper, investigation is focused on the time-dependent dynamics and the effect of the diameter ratio across the bluff-body on the wake flow. In both cases simulated, the dynamics are governed by the shedding of large vortex eddies from the inner and outer sides of the bluff-body. Mixing between the two streams is enhanced by the merging of these eddies downstream the bluff-body and the formation of composite structures. The authors find that the frequency of shedding, the level of fluctuations and the degree of organization are strongly dependent on the diameter ratio. The fluctuation associated with this shedding increases as the diameter ratio becomes larger. The origin and mechanism of shedding in each case are determined from the results.

DOE Contract Number:
FG04-87AL44875
OSTI ID:
5617831
Journal Information:
Journal of Fluids Engineering; (United States), Vol. 115:3; ISSN 0098-2202
Country of Publication:
United States
Language:
English