skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of calculated and measured heat transfer coefficients for transonic and supersonic boundary-layer flows

Journal Article · · Journal of Turbomachinery
DOI:https://doi.org/10.1115/1.2835653· OSTI ID:55494
; ;  [1]
  1. Univ. Karlsruhe (Germany). Lehrstuhl und Inst. fuer Thermische Stroemungsmaschinen

The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U{sub {infinity}} = 230 {divided_by} 880 m/s, Re* = 0.37 {divided_by} 1.07 {times} 10{sup 6}). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent-divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number {kappa}-{epsilon} turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.

Sponsoring Organization:
USDOE
OSTI ID:
55494
Journal Information:
Journal of Turbomachinery, Vol. 117, Issue 2; Other Information: DN: Paper presented at the 39th International Gas Turbine and Aeroengine Congress and Exposition, The Hague, The Netherlands, June 13--16, 1994; PBD: Apr 1995
Country of Publication:
United States
Language:
English