skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of chlorinated aromatic compounds in the environment: Methods development and data interpretation

Miscellaneous ·
OSTI ID:5547936

Detection of low levels of chlorinated benzene compounds (CLBZ) and polychlorinated biphenyls (PCBs) in soil samples has been investigated with respect to potential sources in an industrial area of western New York state. The extract obtained by steam distillation was used directly with minimal additional cleanup steps for high resolution gas chromatography/mass spectrometry (HRGC/MS) and high resolution gas chromatography with electron capture detection (HRGC/ECD) analysis. The Nielson-Kryger steam distillation technique was used to extract CLBZ compounds and PCB congeners from soil samples. The recoveries of the CLBZ compounds in soil samples were monitored by comparison of the response for the {sup 13}C-labelled analogues in each isomeric group. The mean recoveries from field samples ranged from 63% to 76%. The recoveries of PCB congeners were measured using four air-dried subsurface soils which were spiked with Aroclors standard mixture. The mean recoveries of most PCB congeners ranged from 80% to 99%. Using HRGC/MS in the selected ion monitoring mode (SIM), a detection limit below 10 pg/g (10 pptr, parts per trillion) of the CLBZ compounds was achieved. For GC/ECD, an Apiezon L-coated glass capillary column was used to determine PCB congeners at background levels. More than 69 PCB congeners were separated on this column. The detection limit for an individual congener was about 0.01 ng/g. Application of SIMCA (SImple Modeling by Chemical Analogy) pattern recognition and multiple discriminant analysis showed that the pattern of CLBZ compounds in soil samples collected near Love Canal was similar to the patterns from the other areas in the Niagara Falls area. The highest concentrations of CLBZ compounds were detected in the area which is near and downwind from an industrial center with many potential sources of airborne emissions.

Research Organization:
State Univ. of New York, Albany, NY (United States)
OSTI ID:
5547936
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English