skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Work with existing hardware to maximize emissions control

Journal Article · · Power (New York)
OSTI ID:55477

Regulatory uncertainty cripples capital investment, but has also helped unleash a surprising level of ingenuity to lower the costs of compliance. Techniques described here could become popular as CAA Phase 2 unfolds. Regulated rate-of-return structures are eroding as competitive forces erupt, permanently changing the business landscape. Meanwhile, complying with Title IV of the Clean Air Act Amendments of 1990 (CAA), a relative certainty, is clouded by a host of other potential environmental compliance issues -- air-toxics regulations, solid-waste restrictions, global warming and CO{sub 2} discharges, water management, and differing state, regional, and local regulations. As a result, utilities are reacting by spending as little as possible, especially in terms of compliance with CAA Phase 2. But by doing so, they are applying and/or demonstrating a variety of low-cost techniques that achieve significant emissions reductions. In some cases, these techniques may simply involve a trade off of capital investment for higher operating costs. But in a significant number of other cases, the techniques could emerge as key design improvements for the new generation of powerplants. To these techniques must be added the buying of SO{sub 2} allowances as a replacement for, or enhancement of, SO{sub 2}removal strategies. What many of these techniques have in common are (1) maximum use of existing hardware and (2) integration of emissions control into standard powerplant components. Broadly surveying the industry reveals the following general areas that are explored here: fuel changes, reducing NO{sub x} emissions through better control over the combustion process, employing low-cost catalyst and/or selective non-catalytic reduction (SNCR), getting more out of existing flue-gas desulfurization (FGD) processes, and improving existing particulate collection devices.

OSTI ID:
55477
Journal Information:
Power (New York), Vol. 139, Issue 3; Other Information: PBD: Mar 1995
Country of Publication:
United States
Language:
English