skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stable isotope systematics in Pleistocene deep-sea sediment records

Thesis/Dissertation ·
OSTI ID:5517019

The distribution of stable isotopes of oxygen and carbon in deep-sea sediments is a prime information carrier in paleoceanography. Isotope stratigraphies from deep-sea cores provide a tool for correlation, as well as an index for monitoring paleoclimate. Stable isotope systematics have been examined at several levels: 1) Data precision. Stable isotope data quality for a number of foraminifera species and size fractions is assessed by performing multiple analyses on subgroups of a given sample. Error measures have been determined which can be used to plan sampling. 2) Benthic mixing. Stratigraphic signals recovered from the deep-sea have been subjected to distortion from the activity of benthic organisms. A quantitative look at the effects of the mixing on the recovery of stratigraphic signals is presented. The unmixing problem, that is the problem of recovering high-frequency information lost in the mixing process, is also examined. A technique is developed, which allows determination of the benthic mixing parameters from certain stratigraphic relationships in multiple delta/sup 18/O signals. 3) Sedimentation rate nonlinearity. Spectral analyses are almost routinely performed on deep-sea delta/sup 18/O records, usually with the intent of finding climatic driving signals. This type of analysis assumes a linear sedimentation rate. Nonlinearity of sedimentation rate is examined at two levels. A long period (500 ka) dissolution cycle in the late Pleistocene is examined. It is demonstrated that this dissolution has affected stable isotopes and that considerable carbonate material has been dissolved.

OSTI ID:
5517019
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English