skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Part I: RNA hydrolysis catalyzed by imidazole compounds. Part II. Hydrophobic acceleration of reactions and mimics of thiamin-dependent enzymes

Thesis/Dissertation ·
OSTI ID:5516582

Catalysts modeled after the active site groups of the enzyme Ribonuclease A were synthesized and tested for catalysis of the hydrolysis of poly(rU), using a quantitative assay. The most effective of all the catalysts is N,N{prime}-bis-imidazolylmethane, which gave a four-fold rate enhancement as compared to N-methyl-imidazole. The structure/activity relationships are discussed in light of the ribonuclease mechanism. Also examined were reactions catalyzed by the coenzyme thiamine. In an investigation of the effects of restricting conformational freedom, a thiazolium salt was attached in two positions to {beta}-cyclodextrin. Since the catalyst gave about the same rate for tritium exchange from benzaldehyde as singly-attached catalysts, we surmise that any rate enhancement due to the restriction of bond rotations has been lost by forcing the structure into less productive conformations. The benzoin condensation catalyzed by cyanide was also investigated. The reaction was shown to be faster in water than in most organic solvents. Kinetic salt effects and the effects of added {beta}- and {gamma}-cyclodextrin were measured in water; salting-out ions and {gamma}-cyclodextrin increase the rate, while salting-in ions and {beta}-cyclodextrin decrease it. Negative salt effects were observed in formamide, ethylene glycol, and DMSO. All these media effects are discussed in relation to the compact, hydrophobic transition state for the reaction.

Research Organization:
Columbia Univ., New York, NY (USA)
OSTI ID:
5516582
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English