skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrogalvanic finite element analysis of partially protected marine structures

Journal Article · · Corrosion (Houston); (United States)
DOI:https://doi.org/10.5006/1.3580834· OSTI ID:5481452

A general finite element modeling (FEM) procedure for calculating electrogalvanic field responses due to multiple anodic/cathodic interactions has been developed. Within any defined electrolytic continuum the exact geometry and location of anodes, cathodes, and paint surfaces can now be realistically incorporated in the mathematical model formulation. The anodic/cathodic interactions in the conductive electrolyte are predicted by the application of classical d.c. electric field theory for conductive continuums in conjunction with widely accepted laboratory oxidation/reduction responses for the electrodes. The electrogalvanic fields in the electrolyte are calculated using the scalar Poisson equation whereby traditional boundary conditions are prescribed in the far field of the electrolyte. In the near field of the anodes, cathodes, and the painted metallic substrate, complex boundary conditions are enforced based on empirical polarization curves and paint impedance values. The ionic current in the electrolyte leaving the anode and arriving at the cathodes are mathematically constrained to sum to zero over the metallic surface (spatial Kirchoff's law). Three example problems (three dimensional) of an iron bar in salt water will demonstrate the electrochemical field effects due to relative anodic/cathodic spacing, anodic/cathodic geometries, and infinite paint impedance. A fourth boundary value problem (two dimensional) will illustrate the effect of a paint discontinuity (unprotected area) in the center of the otherwise painted (finite impedance) metallic substrate. The proposed electrochemical modeling procedure has the advantage of concurrently treating numerous essential electrochemical parameters for any geometric anodic/cathodic configurations consistent with the physical laws of electrochemistry.

Research Organization:
Office of Engineering Mechanics, Naval Underwater Systems Center, New London, Connecticut
OSTI ID:
5481452
Journal Information:
Corrosion (Houston); (United States), Vol. 39:5
Country of Publication:
United States
Language:
English