skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Topography of ganglion cell production in the cat's retina

Journal Article · · J. Neurosci.; (United States)
OSTI ID:5480770

The ganglion cells of the cat's retina form several classes distinguishable in terms of soma size, axon diameter, dendritic morphology, physiological properties, and central connections. Labeling with (/sup 3/H)thymidine shows that the ganglion cells which survive in the adult are produced as several temporally shifted, overlapping waves: medium-sized cells are produced before large cells, whereas the smallest ganglion cells are produced throughout the period of ganglion cell generation. Large cells and medium-sized cells show the same distinctive pattern of production, forming rough spirals around the area centralis. The oldest cells tend to lie superior and nasal to the area centralis, whereas cells in the inferior nasal retina and inferior temporal retina are, in general, progressively younger. Within each retinal quadrant, cells nearer the area centralis tend to be older than cells in the periphery, but there is substantial overlap. The retinal raphe divides the superior temporal quadrant into two zones with different patterns of cell addition. Superior temporal retina near the vertical meridian adds cells only slightly later than superior nasal retina, whereas superior temporal retina near the horizontal meridian adds cells very late, contemporaneously with inferior temporal retina. The broader wave of production of smaller ganglion cells seems to follow this same spiral pattern at its beginning and end. The presence of the area centralis as a nodal point about which ganglion cell production in the retinal quadrants pivots suggests that the area centralis is already an important retinal landmark even at the earliest stages of retinal development.

Research Organization:
Univ. of Chicago, IL
OSTI ID:
5480770
Journal Information:
J. Neurosci.; (United States), Vol. 5:3
Country of Publication:
United States
Language:
English