skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxidation of phenol over a transition-metal oxide catalyst in supercritical water

Journal Article · · Industrial and Engineering Chemistry Research
DOI:https://doi.org/10.1021/ie9701130· OSTI ID:538216
 [1];  [2]
  1. National Inst. of Chemistry, Ljubljana (Slovenia). Lab. of Catalysis and Chemical Reaction Engineering
  2. Univ. of Ljubljana (Slovenia). Dept. of Chemical Engineering

The oxidation kinetics of phenol in supercritical water was examined in the presence of a solid catalyst consisting of supported copper, zinc, and cobalt oxides in an integrally operated fixed-bed reactor. For the conditions studied the rate of phenol disappearance was found to be well described by the Langmuir-Hinshelwood kinetic formulation, which accounts for the equilibrium adsorption of phenol and for dissociative oxygen adsorption processes to the different types of active sites and a bimolecular surface reaction between adsorbed species on adjacent active catalyst sites to be the controlling step. The apparent activation energy and the heat of phenol adsorption in the temperature range 400--440 C were found to be 109 and 24 kJ/mol, respectively. The products identified in the effluent include dimers, single-ring compounds, organic acids, and gaseous end products. The involvement of a homogeneous-heterogeneous free-radical mechanism is indicated by the intermediates formed. The product distribution suggests that the catalyst is much more selective on the para isomer of phenoxy radical. Comparing the wide spectrum of organic acids formed during the noncatalytic phenol oxidation in supercritical water with only formic and acetic acid found in the effluent of catalytic process, it may be concluded that the intermediates adsorbed on the catalyst surface are probably rapidly oxidized to the low molecular weight acids.

OSTI ID:
538216
Journal Information:
Industrial and Engineering Chemistry Research, Vol. 36, Issue 9; Other Information: PBD: Sep 1997
Country of Publication:
United States
Language:
English

Similar Records

Catalytic liquid-phase oxidation of phenol aqueous solutions: A kinetic investigation
Journal Article · Thu Dec 01 00:00:00 EST 1994 · Industrial and Engineering Chemistry Research; (United States) · OSTI ID:538216

Catalytic oxidation of phenol over MnO{sub 2} in supercritical water
Journal Article · Fri Oct 01 00:00:00 EDT 1999 · Industrial and Engineering Chemistry Research · OSTI ID:538216

COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER
Technical Report · Mon Oct 18 00:00:00 EDT 1999 · OSTI ID:538216