skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-temperature molten salt thermal energy storage systems

Technical Report ·
OSTI ID:5321207

Experimental results of comparative screening studies of candidate molten carbonate salts as phase-change materials (PCM) for advanced solar-thermal energy storage applications at 540/sup 0/ to 870/sup 0/C and steam-Rankine electric generation at 400/sup 0/ to 540/sup 0/C are presented. Alkali carbonates are attractive as latent-heat storage materials because of their relatively high storage capacity and thermal conductivity, low corrosivity, moderate cost, and safe and simple handling requirements. Salts were tested in 0.1 kWhr lab-scale modules and evaluated on the basis of discharge heat flux, solidification temperature range, thermal cycling stability, and compatibility with containment materials. The feasibility of using a distributed network of high-conductivity material to increase the heat flux through the layer of solidified salt was experimentally evaluated. The thermal performance of an 8 kWhr thermal energy storage (TES) module containing LiKCO/sub 3/ remained very stable throughout 5650 h and 130 charge/discharge cycles at 480/sup 0/ to 535/sup 0/C. A TES utilization concept of an electrical generation peaking subsytem composed of a multistage condensing steam turbine and a TES subsystem with a separate power conversion loop was defined. Conceptual designs for a 100 MW/sub e/ TES peaking system providing steam at 316/sup 0/, 427/sup 0/, and 454/sup 0/ at 3.79 x 10/sup 6/ Pa were developed and evaluated. Areas requiring further investigation have also been identiied.

Research Organization:
Institute of Gas Technology, Chicago, IL (USA)
DOE Contract Number:
AI01-77ET26945
OSTI ID:
5321207
Report Number(s):
DOE/NASA/0806-79/1; NASA-CR-159663
Country of Publication:
United States
Language:
English