skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Leaching behaviors of high-sulfur coal wastes from two Appalachian coal-preparation plants

Technical Report ·
OSTI ID:5318721

We have completed an assessment of the environmental behaviors of high-sulfur coal wastes obtained from two coal preparation plants located in northern Appalachia. Leachates obtained from these materials are often very acidic, with pH values sometimes less than 2, and contain high concentrations of a number of chemical elements. Aluminum, manganese, iron, nickel, and sometimes copper, zinc, and cadmium are released in environmentally harmful concentrations according to the Environmental Protection Agency Multimedia Environmental Goals/Minimum Acute Toxicity Effluent (MEG/MATE) system of evaluation. Iron is the worst case, with concentrations typically more than 30 times the acceptable level. In terms of leaching behavior, these wastes are very similar to the Illinois Basin coal wastes that we have studied in the past. Unless properly disposed of, these wastes may cause serious environmental degradation as a result of contaminated drainages. Studies of the chemical composition and morphology of these coal wastes reveal that many of the environmentally important elements leached from the solid wastes in high percentages (Fe, Co, Ni, Cu, Zn, As, Se) tend to reside among either mixed-layer clays or pyritic mineral phases. Elements associated with quartz or more orderly clays, such as kaolinite or illite, are generally leached in lower percentages. Important determinants of coal waste leaching behavior are pyrite, which determines the acid generating potential of the waste, calcite, which determines the capacity of the waste to self-neutralize the acids released by oxidation of pyrite, and the clay minerals, which serve as reservoirs for many of the leachable trace elements.

Research Organization:
Los Alamos National Lab., NM (USA)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
5318721
Report Number(s):
LA-9356-MS; ON: DE82019488
Country of Publication:
United States
Language:
English

Similar Records