skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of an acid rain environment on limestone surfaces

Journal Article · · Mater. Performance; (United States)
OSTI ID:5310640

As part of a study to assess mineralogical alterations in building stone caused by acid rain, Salem limestone samples were exposed for one year in several urban and one rural environments. Samples exposed in the rural location were chemically indistinguishable from the freshly quarried limestone (control material). All samples collected from urban exposure sites developed gypsum stains on the grounding surfaces, where the stones were unwashed by precipitation. However, the bulk chemistry of the urban samples (not including the stain) was virtually identical to that of the control stone. Sulfur (in the form of sulfate) was disseminated over the calcite grain surfaces to a depth less than 10 nanometer in the freshly quarried limestone; an identical sulfate layer was found on the calcite grains after the 1-y exposure period. Mass balance calculations and sulfur isotope patterns indicate that the gypsum stain on the protected surfaces consists of adventitious sulfur. A model, involving the attack of SO/sub 2/ on dry calcite, was used to define the conditions for stain formation on dry, protected surfaces. This suggests that under arid conditions, once the surface has been saturated with gypsum, the quantity of stain deposited on an unwashed surface is independent of atmospheric SO/sub 2/ concentration. On rain-washed surfaces experiencing gas-solid attack during intermittent dry periods, the quantity of gypsum produced by a gas-solid reaction mechanism should strongly correlate with both the frequency of rain events and the atmospheric SO/sub 2/ level, provided that the rain events are frequent and clearly delimited by periods of dryness.

Research Organization:
US Geological Survey, 345 Middlefield Rd., Menlo Park, CA 94025 (USA)
OSTI ID:
5310640
Journal Information:
Mater. Performance; (United States), Vol. 26:11
Country of Publication:
United States
Language:
English