skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and properties of 2-acetylthiamin pyrophosphate: an enzymatic reaction intermediate

Journal Article · · Biochemistry; (United States)
DOI:https://doi.org/10.1021/bi00398a007· OSTI ID:5301978

The synthesis of 2-acetylthiamin pyrophosphate (acetyl-TPP) is described. The synthesis of this compound is accomplished at 23/sup 0/C by the oxidation of 2-(1-hydroxyethyl) thiamin pyrophosphate using aqueous chromic acid as the oxidizing agent under conditions where Cr(III) coordination to the pyrophosphoryl moiety and hydrolysis of both the pyrophosphate and acetyl moieties were prevented. Although the chemical properties exhibited by acetyl-TPP are similar to those of the 2-acetyl-3,4-dimethylthiazolium ion examined by Lienhard, significant differences exist because of the pyrimidine ring in acetyl-TPP. Characterization of acetyl-TPP by ultraviolet spectroscopy, /sup 1/H NMR, /sup 13/C NMR, and /sup 31/P NMR provided evidence that the compound in aqueous solution exists as an equilibrium mixture of keto, hydrate, and intramolecular carbinolamine forms. The equilibria for the hydration and carbinolamine formation reactions at pD 1.3 as determined by /sup 1/H NMR are strongly dependent on the temperature, showing an increase in the hydrate and carbinolamine forms at the expense of the keto form with decreasing temperature. The concentration of keto form also decreases with increasing pH. Acetyl-TPP is stable in aqueous acid but rapidly deacetylates at higher pH to form acetate and thiamin pyrophosphate. Trapping of the acetyl moiety in aqueous solution occurs efficiently with 1.0 M hydroxylamine at pH 5.5-6.5 to form acetohydroxamic acid and to a much smaller extent with 1.0 M 2-mercaptoethanol at pH 4.0 and 5.0 to form thio ester. Transfer of the acetyl group to 0.5 M dihydrolipoic acid at pH 5.0 and 1.0 M phosphate dianion at pH 7.0 is not observed to any significant extent in water. The kinetic and thermodynamic reactivity of acetyl-TPP with water and other nucleophiles is compatible with a hypothetical role for acyl-TPPs as enzymatic acyl-transfer intermediates.

Research Organization:
Univ. of Wisconsin, Madison
OSTI ID:
5301978
Journal Information:
Biochemistry; (United States), Vol. 26:24
Country of Publication:
United States
Language:
English