skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The EUV dayglow at high spectral resolution

Journal Article · · Journal of Geophysical Research; (United States)
; ;  [1];  [2]
  1. Johns Hopkins Univ., Baltimore, MD (United States)
  2. Naval Research Lab., Washington, DC (United States)

Rocket observations of the dayglow spectrum of the terrestrial atmosphere between 840 {angstrom} and 1860 {angstrom} at 2 {angstrom} resolution were obtained with a sounding rocket payload flown on January 17, 1985. Additionally, spectra were also obtained using a 0.125-m focal length scanning Ebert-Fastie monochromator covering the wavelength interval of 1150-1550 {angstrom} at 7 {angstrom} resolution on this flight and on a sounding rocket flight on August 29, 1983, under similar viewing geometries and solar zenith angles. Three bands of the N{sub 2} c{prime}{sub 4} system are seen clearly resolved in the dayglow. Analysis of high-resolution N{sub 2} Lyman-Birge-Hopfield data shows no anomalous vibrational distribution as has been reported from other observations. The altitude profiles of the observed O and N{sub 2} emissions demonstrate that the MSIS-83 model O and N{sub 2} densities are appropriate for the conditions of both the 1983 and 1985 rocket flights. A reduction of a factor of 2 in the model O{sub 2} density is required for both flights to reproduce the low-altitude atomic oxygen emission profiles. The volume excitation rates calculated using the Hinteregger et al. (1981) SC{number sign}21REFW solar reference spectrum and the photoelectron flux model of Strickland and Meier (1982) need to be scaled upward by a factor of 1.4 for both fights to match the observations.

OSTI ID:
5255081
Journal Information:
Journal of Geophysical Research; (United States), Vol. 95:A4; ISSN 0148-0227
Country of Publication:
United States
Language:
English