skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CVD diamond for optics applications in high heat flux environments

Conference ·
OSTI ID:524772
 [1]
  1. C.A.K. Analytics, Inc., Lexington, MA (United States)

Diamond has a cubic lattice structure and a very wide bandgap, which suggests that this material should exhibit excellent optical properties at wavelengths ranging from the far infrared to the near ultraviolet. Since diamond also exhibits unusually favorable properties in terms of mechanical strength, chemical stability, and thermal conductivity, there is considerable interest in using diamond for optics applications that involve adverse environmental conditions. The purpose of this paper is to provide an updated assessment of some of the issues that arise in connection with the use of chemically vapor-deposited (CVD) diamond for applications such as missile system windows or domes, and for designing components that must function in the high photon flux of high-power lasers. Specifically, since the flight velocities of future air-intercept missiles are projected to far exceed those of contemporary systems, this raises the issue of how to assess the capability of window/dome material candidates in an aero-thermal shock environment. In this context, it can be demonstrated that, compared to other candidate materials, diamond windows promise to deliver superior performances and should be able to meet any foreseeable requirement. Operation at high speeds, however, imposes limits on the tolerable window emittance to prevent blinding the seeker, and this issue leads to the conclusion that diamond is intrinsically unsuitable for operation in the 3- to 5-{micro}m spectral band. Concerning high-energy lasers, note that operational systems always include an optical train consisting of mirrors and windows, which must be capable of transporting and directing the beam without seriously degrading the nominal performance of the laser. In this regard, mirror-faceplate material candidates can be ranked on the basis of appropriate figures of merit, which demonstrate that diamond is of particular promise for high-heat-load applications that require efficient cooling.

OSTI ID:
524772
Report Number(s):
CONF-960848-; ISBN 0-8194-2243-6; TRN: IM9740%%247
Resource Relation:
Conference: Denver `96: 1. conference on space processing of materials, at SPIE International Society for Optical Engineering (SPIE) annual international symposium on optical science, engineering, and instrumentation, Denver, CO (United States), 4-9 Aug 1996; Other Information: PBD: 1996; Related Information: Is Part Of High heat flux engineering III; Khounsary, A.M. [ed.] [Argonne National Lab., IL (United States)]; PB: 329 p.; Proceedings/SPIE, Volume 2855
Country of Publication:
United States
Language:
English