skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Results of numerical modeling of the convective burning of particulate explosive systems in the presence of increasing pressure

Journal Article · · Combust., Explos. Shock Waves (Engl. Transl.); (United States)
OSTI ID:5159990

The authors analyze the results of a numerical simulation of the convective burning of explosive powders in the presence of increasing pressure. The formulation of the problem reproduces a typical experimental technique: a strong closed vessel with a channel uniformly filled with the explosive investigated is fitted with devices for initiating and recording the process of explosion. It is shown that the relation between the propagation velocities of the flame and the compression waves in the powder and the rate of pressure increase in the combustion zone is such that a narrow compaction zone is formed ahead of the ignition front. Another important result is obtained by analyzing the difference between the flame velocity and the gas flow velocity in the ignition front. A model of the process is given. The results of the investigation throw light on such aspects of the convective combustion mechanism and the transition from combustion to detonation as the role of compaction of the explosive in the process of flame propogation and the role of the rate of pressure increase and dissipative heating of the gas phase in the pores ahead of the ignition front.

OSTI ID:
5159990
Journal Information:
Combust., Explos. Shock Waves (Engl. Transl.); (United States), Vol. 21:5
Country of Publication:
United States
Language:
English