skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inhaled nitric oxide: Dose response and the effects of blood in the isolated rat lung

Journal Article · · Journal of Applied Physiology (1985); (United States)
; ; ; ; ;  [1]
  1. Univ. of Virginia Health Sciences Center, Charlottesville, VA (United States)

Inhaled nitric oxide (NO) is a vasodilator selective to the pulmonary circulation. Using isolated rat lungs, the authors determined the dose-response relationship of NO and the role of blood in mediating pulmonary vasodilation and selectivity. Inhaled 20, 50, 100, and 1,000 ppm NO attenuated (P < 0.001) hypoxic pulmonary vasoconstriction by 16.1 [+-] 4.9, 22.6 [+-] 6.8, 28.4 [+-] 3.5, and 69.3 [+-] 4.2%, respectively. Inhaled 13, 34, 67, and 670 ppm NO attenuated the increase in pulmonary arterial pressure secondary to angiotensin II more (P < 0.001) in Greenberg-Bohr buffer- (GB) than in blood-perfused lungs (51.7 [+-] 0.0, 71.9 [+-] 8.9, 78.2 [+-] 5.3, and 91.9 [+-] 2.1% vs. 14.3 [+-] 4.2, 23.8 [+-] 4.6, 28.4 [+-] 3.8, and 55.5 [+-] 5.9%, respectively). Samples from GB- but not blood-perfused lungs contained NO (93.0 [+-] 26.3 nM). Intravascular NO attenuated the response to angiotensin II more (P < 0.001) in GB- (with and without plasma) than in blood- (hematocrit = 41 and 5%) perfused lungs (75.6 [+-] 6.4 and 70.9 [+-] 4.8% vs. 22.2 [+-] 2.4 and 39.4 [+-] 7.6%). In conclusion, inhaled NO produces reversible dose-dependent pulmonary vasodilation over a large range of concentrations. Inhaled NO enters the circulation, but red blood cells prevent systematic vasodilation and also a significant amount of pulmonary vasodilation. 24 refs., 7 figs., 2 tabs.

OSTI ID:
5100842
Journal Information:
Journal of Applied Physiology (1985); (United States), Vol. 75:3; ISSN 8750-7587
Country of Publication:
United States
Language:
English