skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental and theoretical analysis of a Solar Liquid Piston Pump

Journal Article · · J. Sol. Energy Eng.; (United States)
DOI:https://doi.org/10.1115/1.3267687· OSTI ID:5061689

The Solar Liquid Piston Pump (SLPP) is driven by oscillations of an enclosed column of liquid Freon 113. Cyclic evaporation and condensation from heating and cooling coils at the top of the liquid column generate the oscillations. The frequency and amplitude of the oscillations are enhanced by momentum forces in the inlet, outlet, and working tubes. Three geometrically different experimental models of a SLPP have been tested. To optimize the performance of the SLPP, a theoretical model was required to account for the large number of interdependent parametres that could be varied. A semiemperical time-incremented computer model was developed. A theoretical cycle was assumed and the heat transfer and fluid friction coefficient adjusted, within reasonable limits, so that the theoretical pressurevolume diagrams agreed closely with experimental ones. Input parameters were then varied for the theoretical model and compared to experimental results available. The theoretical model successfully predicted performance trends of the SLPP.

Research Organization:
Department of Mechanical Engineering, McGill University, Montreal, Quebec
OSTI ID:
5061689
Journal Information:
J. Sol. Energy Eng.; (United States), Vol. 107:3
Country of Publication:
United States
Language:
English