skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fluid inclusion and isotopic systematics of an evolving magmatic-hydrothermal system

Journal Article · · Geochimica et Cosmochimica Acta
 [1];  [2]
  1. Earth Sciences and Resources Institute, Salt Lake City, UT (United States)
  2. Unocal Corp., Santa Rose, CA (United States)

The Geysers, California, is the site of a long-lived hydrothermal system that initially developed 1.5-2 m.y. ago in response to the intrusion of a hypabyssal granitic pluton. Although wells drilled into The Geysers produce only dry steam, fluid inclusion, isotopic, and mineralogic data demonstrate that the present vapor-dominated regime evolved from an earlier and more extensive, liquid-dominated hydrothermal system. Circulation of these early fluids produced veins characterized by tourmaline {+-} biotite {+-} actinolite {+-} clinopyroxene within the pluton and adjacent biotite-rich hornfels, actinolite {+-} ferroaxinite {+-} epidote and epidote {+-} chlorite within the intermediate parts of the thermal system and calcite in the outer parts. Potassium feldspar and quartz are present in all assemblages. Pressure-corrected homogenization temperatures and apparent salinities of fluid inclusions trapped in vein minerals range from 440{degrees}C and 44 wt% NaCl equivalent within the hornfels (<600 m from the pluton) to 325{degrees}C and 5 wt% NaCl equivalent at distances of approximately 1500 m from the intrusion. We suggest that the shallow, moderate salinity fluids are connate waters modified by water-rock interactions while the high-salinity fluids are interpreted as magmatic brines. Halite-dissolution temperatures of inclusions in the hornfels and pluton indicate that the magnetic fluids were trapped at lithostatic pressures (300-900 bars). In contrast, homogenization temperatures of the connate fluids suggest trapping under hydrostatic pressures of less than several hundred bars. Whole-rock {delta}{sup 18}O values of samples from The Geysers display systematic variations with respect to depth, location within the field, and grade of alteration. At depths below +610 m relative to mean sea level, the {delta}{sup 18}O values are strongly zoned around a northwest-southeast trending low located near the center of the steam reservoir. 77 refs., 15 figs., 2 tabs.

DOE Contract Number:
AC07-90ID12929
OSTI ID:
505161
Journal Information:
Geochimica et Cosmochimica Acta, Vol. 59, Issue 19; Other Information: PBD: Oct 1995
Country of Publication:
United States
Language:
English