skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Endothelial cell damage after gamma-irradiation in vitro: impaired uptake of alpha-aminoisobutyric acid. [137Cs]

Journal Article · · Am. Rev. Respir. Dis.; (United States)
OSTI ID:5027482

The effects of gamma-irradiation with a cesium-137 source were assessed on endothelial cells isolated from bovine pulmonary arteries and maintained in culture. The radiobiologic parameters that characterize the dose-response survival curve for these cells, expressed as mean +/- SD were found to be n . 1.6 +/- 0.2, Dq . 71 +/- 13 rads, and Do . 161 +/- 35 rads, indicating a relatively low capacity of these cells to accumulate or repair radiation damage. Increasing doses of radiation led to decreasing uptake by endothelial cells of (14C)2-aminoisobutyric acid (AIB), a Na+-dependent and nonmetabolizable amino acid. A dose of 500 rads, which caused marked inhibition of cell survival, resulted in a 45% decrease in AIB uptake at 6 h and a 69% decrease in uptake at 24 h after irradiation. No morphologic abnormality was noted in these cells by light microscopy at 24 h after this dose of radiation. Bovine pulmonary artery fibroblasts, on the other hand, showed no significant impairment in uptake of AIB 24 h after exposure to doses of radiation as high as 5,000 rads. The uptake by endothelial cells of (14C)1-aminocyclopentane-1-carboxylic acid, an amino acid transported by a Na+-independent process, was not influenced by 5,000 rads of radiation. Our studies show that endothelial cells are sensitive to radiation and that impaired Na+-dependent uptake of AIB represents an early event in radiation damage to the endothelial cell.

Research Organization:
Department of Therapeutic Radiology, Tufts-New England Medical Center, Boston, Massachusetts
OSTI ID:
5027482
Journal Information:
Am. Rev. Respir. Dis.; (United States), Vol. 125:1
Country of Publication:
United States
Language:
English