skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Petrology and dolomitization of the C' zone, Red River Formation (Ordovician), in a deep core, Williston basin, Richland County, eastern Montana

Conference · · Geological Society of America, Abstracts with Programs; (United States)
OSTI ID:5018728
 [1]
  1. Pomona College, Claremont, CA (United States). Geology Dept.

Unocal's Superior [number sign]1 Vanderhoof 97-foot (29.6 m) core consists of 63 feet (19.2 m) of the upper part of the C' burrowed member (BM) overlain by 34 feet (10.4 m) of the C' laminated member (LM) of the productive Red River Formation. The LM is mainly laminated, anhydritic, stylolitic, essentially unfossiliferous dolomudstone to calcareous dolomudstone with more minor dolomitic lime mudstone. The unit represents a restricted, hypersaline, inner shelf environment. The BM is burrow-mottled (Thalassinoides ), skeletal, dolomitic wackestone to grainstone matrix to calcareous dolowackestone (burrow fills) and represents near-normal salinity, inner shelf conditions. Dolomite is primarily replacive and in the LM occurs as 25--50 [mu]m rhombs floating in mudstone or associated with stylolites, and as nonplanar, polymodal (5--50 [mu]m) crystals in totally dolomitized intervals. Most BM dolomite consists of 20--160 [mu]m, primarily nonplanar crystals in the largely replaced burrow fills; it also occurs as crystals that are disseminated or focused along stylolites (as in LM), as large crystals selectively and pseudomorphically replacing echinoderm fragments, and more rarely as late-stage, void-filling saddle dolomite. Previous theories of dolomitization have invoked descending brines. Geochemical data, in particular depleted [delta][sup 18]O and relatively low amounts of trace elements Sr and Na, but high Fe and Mn content, reveal that if brines were responsible for early diagenetic replacement, the dolomite has not retained such geochemical memory; rather it has undergone modification, acquiring later diagenetic, burial signatures. Possibly more of the replacement itself was later and deeper than previously thought.

OSTI ID:
5018728
Report Number(s):
CONF-9305259-; CODEN: GAAPBC
Journal Information:
Geological Society of America, Abstracts with Programs; (United States), Vol. 25:5; Conference: 89. annual meeting of the Cordilleran Section and the 46th annual meeting of the Rocky Mountain Section of the Geological Society of America (GSA), Reno, NV (United States), 19-21 May 1993; ISSN 0016-7592
Country of Publication:
United States
Language:
English