skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of degradative techniques for coal chemistry based on ether cleavage reactions and metal arene chemistry

Thesis/Dissertation ·
OSTI ID:5002849

The degradation of C-O and C-C bonds have been examined using model compounds that are similar in structure to those found in coal and other natural products. The conditions to maximize ether cleavage and minimize the formation of undesirable side products were determined by varying the concentration of reagents, temperature, and reaction time. 2-Phenoxynaphthalene (1) and 1-methoxypyrene (2) were the compounds examined. The optimum conditions demonstrated complete disappearance of 1 and 2, mass recoveries were above 84%, and the formation of reduced dimers in less than 10 mole % yield. The possibility of cleaving a C-C bond by a (3+2) cycloaddition and subsequent cycloreversion reactions was examined by treating a variety of dipolarphiles with deprotonated (({eta}{sup 6}-arene)FeCp){sup +} complexes (arene = hexamethylbenzene or tetralin) Azides and ozone were found to add quantitatively to the metal-arene complexes. Upon decomplexation of the ring, moderated yields of benzyl substituted products were isolated. The mechanism of this reaction is yet unknown but is postulated to occur by direct nucleophilic addition of the complex anion to the most electropositive atom of the dipolarphile. Chemical and electrochemical oxidation techniques were applied to the deprotonated (({eta}{sup 6}-arene)FeCp){sup +} complexes. Only minor yields of benzylic oxidation products were observed.

Research Organization:
North Dakota Univ., Grand Forks, ND (USA)
OSTI ID:
5002849
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English