skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Iron oxide and chromia supported on titania-pillared clay for selective catalytic reduction of nitric oxide with ammonia

Journal Article · · Journal of Catalysis
;  [1];  [2]
  1. State Univ. of New York, Buffalo, NY (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States)

TiO{sub 2}-pillard clay (PILC) with high surface area, large pore volume, and large interlayer spacing was used as the support for mixed Fe{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} as the catalyst for selective catalytic reduction (SCR) of NO with NH{sub 3}. The Fe/Cr ratio was varied at a fixed total amount of oxide dopant of 10% (wt). The Fe-Cr/TiO{sub 2}-PILC with Fe/Cr=3 showed the highest activity. Compared with commercial V{sub 2}O{sub 5}/TiO{sub 2} catalysts, the activity (on a per gram basis) of the doped pillared clay was approximately twice as high under H{sub 2}O- and SO{sub 2}-free conditions and was approximately 40% higher under conditions with H{sub 2}O and SO{sub 2}. In addition, its activity for SO{sub 2} oxidation was only 20%-25% of that of the V{sub 2}O{sub 5}-based catalysts. TPD of NH{sub 3} on the Fe-Cr/TiO{sub 2}-PILC catalyst showed that both M=O and M-OH (M=Fe or Cr) were necessary for the SCR reaction. In situ IR spectra of NH{sub 3} showed that there was a higher Bronsted acidity than the Lewis acidity on the surface under reaction conditions and that there existed a direct correlation between the SCR activity and the Bronsted acidity among pillared clays with different Fe/Cr ratios. These results, along with the transient response to O{sub 2}, indicated that a similar mechanism to that on the V{sub 2}O{sub 5} catalyst was operative. The TiO{sub 2}-pillared clay used as the support also contributed to the high activity of the Fe-Cr catalyst. The TiO{sub 2} pillars combined with the tetrahedral SiO{sub 2} surfaces of the clay apparently gave rise to a high dispersion of Fe{sub 2}O{sub 3}. 52 refs., 10 figs., 5 tabs.

DOE Contract Number:
FG22-93PC93217
OSTI ID:
486377
Journal Information:
Journal of Catalysis, Vol. 164, Issue 1; Other Information: PBD: Nov 1996
Country of Publication:
United States
Language:
English