skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Source functions of nuclear explosions from spectral synthesis and inversion. Scientific report No. 1

Technical Report ·
OSTI ID:481287

We apply methods for the recovery of the frequency dependent moment rate tensor, M(w), to the study of Lop Nor nuclear explosions. This approach encompasses many source parameter diagnostics that have been traditionally used to discriminate nuclear explosions from chemical explosions and earthquakes and has the potential to provide new discrimination tools. We parameterize the source as M(w) = M1(a) + MD(a), where M1(co) and MD(O) are isotropic and deviatoric components, respectively. Our goal is to quantify both isotropic and deviatoric components, and investigate the different contributions to MD(a), in particular the tectonic release. Since tectonic release can bias estimates of M1(o) and may limit discrimination capabilities of sparse networks, it is important to be able to characterize the amount of tectonic release - in particular as a function of frequency. Our approach uses synthetic seismograms to improve the localization of signal measurements in both time and frequency domains. We adapt our earthquake-source inversion algorithms to account for isotropic sources at very shallow depths. We test our algorithms using a synthetic case with a known moment-tensor source composed in equal parts of isotropic and deviatoric sources; we successfully recover both MD and M using body waves and surface waves on horizontal and vertical components. We apply our methods to a data set containing both SH and Love waves as well as the body-wave portion between P and R1 and the minor-arc Rayleigh waves from the 92/5/21 Chinese nuclear test. We recover a significant tectonic release component for this event; the deviatoric moment tensor is a dip-slip reverse fault with a scalar moment MD = 1.9 +/- 0.2 x 10(17) Nm. The strike of the best-fitting double-couple is 320 deg. The source-time function derived from SH-polarized waves shows some complexity, with a sharp pulse i.

Research Organization:
Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Earth, Atmospheric and Planetary Sciences
OSTI ID:
481287
Report Number(s):
AD-A-322213/0/XAB; CNN: Contract F19628-95-C-0102; TRN: 71340320
Resource Relation:
Other Information: PBD: 20 Nov 1996
Country of Publication:
United States
Language:
English