skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics

Journal Article · · American Journal of Human Genetics
OSTI ID:476744
 [1]
  1. Univ. of Texas Medical Branch, Galveston, TX (United States)

This is shaping up as a vintage year for studies of the genetics and evolution of the human mitochondrial genome (mtDNA). In a theoretical and experimental tour de force, Shenkar et al. (1996), on pages 772-780 of this issue, derive the mutation rate of the 4,977-bp (or {open_quotes}common{close_quotes}) deletion in the human mtDNA through refinement and extension of fluctuation analysis, a technique that was first used >50 years ago. Shenkar et al., in essence, have solved or bypassed many of the difficulties that are inherent in the application of fluctuation analysis to human mitochondrial gene mutations. Their study is important for two principal reasons. In the first place, high levels of this deletion cause a variety of pathological disorders, including Kearns-Sayre syndrome and chronic progressive external ophthalmoplegia. Their current report, therefore, is a major step in the elucidation of the molecular genetic pathogenesis of this group of mitochondrial disorders. For example, it now may be feasible to analyze the effects of selection on transmission and segregation of this deletion and, perhaps, other mtDNA mutations as well. Second, and at a broader level, the approach of Shenkar et al. should find widespread applicability to the study of other mtDNA mutations. It has been recognized for several years that mammalian mtDNA mutates much more rapidly than nuclear DNA, a phenomenon with potentially profound evolutionary implications. It is exciting and useful, both experimentally and theoretically, that this {open_quotes}old{close_quotes} approach can be used for {open_quotes}new{close_quotes} applications. 56 refs.

OSTI ID:
476744
Journal Information:
American Journal of Human Genetics, Vol. 59, Issue 4; Other Information: PBD: Oct 1996
Country of Publication:
United States
Language:
English