skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Contaminant concentrations and biomarker response in great blue heron eggs from 10 colonies on the upper Mississippi River, USA

Journal Article · · Environmental Toxicology and Chemistry
;  [1]; ;  [2]; ;  [3]; ;  [4]
  1. National Biological Service, LaCrosse, WI (United States). Upper Mississippi Science Center
  2. National Biological Service, Laurel, MD (United States). Patuxent Wildlife Research Center
  3. Texas A and M Univ., College Station, TX (United States). Dept. of Wildlife and Fisheries
  4. Indiana Univ., Bloomington, IN (United States). School of Public and Environmental Affairs

In 1993, great blue heron (Ardea herodias; GBH) eggs were collected from 10 colonies on the upper Mississippi River (UMR). They were then artificially incubated until pipping and analyzed for mercury, selenium, and organochlorines. Livers of embryos were analyzed for hepatic microsomal ethoxyresorufin-O-dealkylase (EROS) activity and four measures of oxidative stress. Brains were measured for asymmetry and blood was measured for the coefficient of variation of DNA (DNA CV). Organochlorine concentrations were generally low (geometric mean DDE = 1.3 {micro}g/g wet weight; polychlorinated biphenyl [PCB] = 3.0 {micro}g/g; 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD] = 11.5 pg/g). Eggshell thickness was negatively correlated with DDE concentrations. Mercury (geometric mean = 0.8 {micro}g/g dry weight) and selenium (3.1 {micro}g/g dry weight) concentrations in GBH eggs were within background levels. EROD activity was not correlated with total PCBs, TCDD, or toxic equivalents (TEQs), based on the relative contribution of individual PCB congeners, dibenzodioxins (PCDDs), and dibenzofurans (PCDFs) to total calculated TEQs. Three of the four measures of oxidative stress were correlated with mercury concentrations. Twenty of 43 (47%) embryo brains were asymmetrical and the embryos with asymmetrical brains had higher EROD concentrations in the liver and higher DNA CV in the blood than embryos with symmetrical brains.

Sponsoring Organization:
USDOE
OSTI ID:
474326
Journal Information:
Environmental Toxicology and Chemistry, Vol. 16, Issue 2; Other Information: PBD: Feb 1997
Country of Publication:
United States
Language:
English