skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A pilot test of polymer flooding in an elevated-temperature reservoir

Conference ·
OSTI ID:468131

A pilot test of polymer flooding has been conducted in Shuanghe reservoir located in southeast Henan oil field, China. The target reservoir has a net thickness of 15.56 meters (50 ft), an average permeability of 420 md, and temperature of 75{degrees}C (167{degrees}F). The polymers used are two types of modified partially hydrolyzed polyacrylamides, named S525 and S625, which have molecular weights of 16,700,000 and 19,670,000 daltons, respectively. The objective of this pilot test is to investigate the feasibility of polymer flooding for improving oil recovery in an elevated-temperature reservoir. The polymer flooding started in February 1994. Up through December 1995, a total of 246 tons (about 0.5 x 106 lb) of dry polymer had been used with an injection concentration of 900-1100 ppm. The pore volume injected reached 0.2164. As a result, oil production increased by 22,000 tons (184,000 bbl) and water production decreased by 153,000 tons (962,000 bbl), which accounts for the incremental oil recovery of 3.8% and water-cut reduction of 5.6% in the test block. It is estimated that by the end of this project, the ultimate increase in oil production will exceed 63,000 tons (528,000 bbl) with the enhanced oil recovery going up to 9.8%. The yield is 0.2 tons more oil produced per kilogram of polymer injected or 0.7 barrel of oil produced per pound of polymer. The success of the pilot test is attributed to a few techniques used during the implementation of the flooding, including prevention of polymer thermal degradation, good reservoir description, and the profile modification carried out before and after the polymer injection. This pilot test illustrates a case where polymers with extra-high molecular weight are successfully injected in an elevated-temperature reservoir to control the mobility ratio and modify the permeability profile.

OSTI ID:
468131
Report Number(s):
CONF-961003-; TRN: 96:006578-0025
Resource Relation:
Conference: 71. annual technical conference and exhibition of the Society of Petroleum Engineers, Denver, CO (United States), 6-9 Oct 1996; Other Information: PBD: 1996; Related Information: Is Part Of 1996 SPE annual technical conference and exhibition: Reservoir engineering; PB: 833 p.
Country of Publication:
United States
Language:
English