skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: {sup 13}C-{sup 1}H and {sup 13}C-{sup 13}C spin couplings in [2`-{sup 13}C]2`-deoxyribonucleosides: Correlations with molecular structure

Journal Article · · Journal of the American Chemical Society
DOI:https://doi.org/10.1021/ja961622g· OSTI ID:466306
; ; ;  [1];  [2]
  1. Univ. of Notre Dame, IN (United States)
  2. Univ. of Texas Medical Branch, Galveston, TX (United States)

2`-Deoxyribonucleosides (2`-deoxyadenosine (1), 2`-depoxycytidine (2), thymidine (3)) singly enriched with {sup 13}C at C2` have been prepared and used to obtain one-, two-, and three-bond {sup 13}C-{sup 1}H and {sup 13}C-{sup 13}C spin-coupling constants involving C2`. Spin couplings in 1-3 involving C1` and C2`are also compared to corresponding values in ribonucleosides in order to assess the effects of nucleoside structure and conformation on J values within the furanose ring. {sup 1}J{sub C2`,H2`R} and {sup 1}J{sub C2`,H2`S} in 1-3 and {sup 1}J{sub C2`,H2`} in ribonucleosides depend on C-H bond orientation: {sup 1}J{sub C1`,H1`} in 1-3 and in ribonucleosides exhibits a similar dependence. The latter couplings appear to be essentially unaffected by N-glycoside torsion. {sup 1}J{sub CC} values depend on the number and distribution of electronegative substituents on the C-C fragment. A modified projection curve is proposed to aid in the interpretation of {sup 2}J{sub C2`,H1`} values; the presence of N substitution at C1` caused a shift to more negative couplings relative to the O-substituted analog. In contrast, {sup 2}J{sub C1`,H2`} is essentially unaffected by the same change in the electronegative substituent at C1`. {sup 2}J{sub CC} values within the furanose ring are determined buy two coupling pathways; in one case (i.e., {sup 2}J{sub C1`,C3`}), the observed coupling is shown to be the algebraic sum of the two couplings arising from each pathway. 41 refs., 4 figs., 2 tabs.

OSTI ID:
466306
Journal Information:
Journal of the American Chemical Society, Vol. 119, Issue 7; Other Information: PBD: 19 Feb 1997
Country of Publication:
United States
Language:
English