skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancement of critical heat flux in subcooled flow boiling of water by use of a volatile additive

Book ·
OSTI ID:442623
;  [1]
  1. Rensselaer Polytechnic Inst., Troy, NY (United States). Heat Transfer Lab.

The present investigation considers the effect of a 1-pentanol additive in water on the critical heat flux (CHF) and pressure drop in forced subcooled boiling. A small quantity of 1-pentanol was added to distilled water with the objective of getting an approximate 2% by weight mixture, which had been found to give superior performance in previous studies of pool and flow boiling. Experiments were performed using stainless steel tubes with internal diameters of 4.4 and 6.1 mm. Tests were conducted with mass fluxes of 4,400 kg/m{sup 2}s, exit pressures of 9 bar, length-to-diameter ratios of 25, and exit subcoolings from 65 to 90 C. Test sections were heated directly by DC power, and critical heat flux data were inferred from test-section burnout. The alcohol concentration was periodically checked by draining off a sample and performing a Proton Nuclear Magnetic Resonance scan on the mixture. At high subcoolings, the mixture exhibited an increase in the critical heat flux over that of pure water. However at low subcoolings there is a decrease in the critical heat flux. The increases in critical heat flux noted with the 1-pentanol mixture in this experiment were not as large as would be expected from saturated pool boiling results published by Van Stralen (1959). Pressure drop data for both the mixture and the pure water also were recorded. The 1-pentanol mixture, in general, exhibited larger pressure drops for the same conditions. Subcooled flow boiling has a wide array of commercial cooling applications, including blades in gas turbines, high power laser optics, plasma-facing components in fusion reactors, supercomputers, etc.

OSTI ID:
442623
Report Number(s):
CONF-961105-; ISBN 0-7918-1521-8; TRN: IM9712%%48
Resource Relation:
Conference: 1996 international mechanical engineering congress and exhibition, Atlanta, GA (United States), 17-22 Nov 1996; Other Information: PBD: 1996; Related Information: Is Part Of Proceedings of the ASME Heat Transfer Division. Volume 3: Experimental studies in multiphase flow; Multiphase flow in porous media; Experimental multiphase flows and numerical simulation of two-phase flows; Fundamental aspects of experimental methods; HTD-Volume 334; Cheung, F.B. [ed.] [Pennsylvania State Univ., University Park, PA (United States)]; Yang, B.W. [ed.] [Columbia Univ., New York, NY (United States)]; Riznic, J.R. [ed.] [Atomic Energy Control Board, Ottawa, Ontario (Canada)]; Seyed-Yagoobi, J.; Hassan, Y.A.; Kihm, K.D. [eds.] [Texas A and M Univ., College Station, TX (United States)]; Kim, J.H. [ed.] [Electric Power Research Inst., Palo Alto, CA (United States)]; Paolucci, S. [ed.] [Univ. of Notre Dame, IN (United States)]; Oosthuizen, P.H. [ed.] [Queen`s Univ., Kingston, Ontario (Canada)]; PB: 438 p.
Country of Publication:
United States
Language:
English