skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, July--September 1994

Technical Report ·
OSTI ID:43741

Coal liquefaction involves cleavage of methylene and dimethylene bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. The selected compound for model coal liquefaction reactions are 4-(l-naphthylmethyl)bibenzyl (NMBB) and anthrone. This report describes (1) the synthesis and screening of selected iron carbonyl complexes as precursors of dispersed catalysts for hydrocracking of NMBB, and (2) the hydrogenation and hydrodeoxygenation reactions of anthrone. Experiments were carried out at 400{degree}C (for NMBB) or at both 300{degree}C and 400{degree}C (for anthrone) for 30 min under 6.9 MPa H{sub 2} pressure. All catalyst precursors converted NMBB predominately into naphthalene and 4-methylbibenzyl. Small amounts of secondary products were formed by hydrogenation, isomerization and fragmentation of the primary products. The greatest activity among the tested catalysts was found using iron pentacarbonyl with added sulfur. Increasing cluster size lead to decreased activity. The beneficial effect of sulfur was also demonstrated in a reaction of iron pentacarbonyl and NMBB. A sulfur-free run showed substantially smaller conversion, whereas an experiment with added sulfur gave considerably higher conversion. Again, the same trend between cluster size and catalyst activity was observed. The objective of examining oxygen-containing compounds is to investigate the possibility of reduced oxygen functionality in the products of a reaction performed under liquefaction conditions, with the use of highly dispersed catalysts from monometallic and bimetallic organometallic precursors. Both the Ni-Mo and CoMo-T2 precursors showed an increase in the yield of non-0-containing products, compared to a non-catalytic reaction or one using a standard inorganic catalyst precursor, ammonium tetrathiomolybdate (ATTM).

Research Organization:
Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC22-92PC92122
OSTI ID:
43741
Report Number(s):
DOE/PC/92122-T8; ON: DE95010616
Resource Relation:
Other Information: PBD: Nov 1994
Country of Publication:
United States
Language:
English