skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Treatment of wastewater from an oil refinery sour water stripping unit using an aerated submerged biological filter

Conference ·
OSTI ID:377171
;  [1]
  1. Oklahoma State Univ., Stillwater, OK (United States)

The purpose of this research was to determine the kinetic constants for an Aerated Submerged Biological Filter (ASBF) used to reduce the toxicity of a petroleum refinery Process wastewater. The system was run at three different organic loadings and data were collected at steady state conditions for each loading. This data along with data obtained for three other loading conditions done a previous study (1) were used to determine the biokinetics constants which are required for the design of a full scale system. To measure the acute toxicity reduction, a 48- hour static bioassay was done on the ASBF unit influent and effluent. An attempt was also made to identify a significant fraction contributing to the toxicity by running the samples through a clinoptilolite column and then running a bioassay on the treated samples. At lower loading conditions (14.0 g COD/m{sup 2}/day), the ASBF gave maximum reduction of monitored parameters except ammonia. At the highest loading condition (24.0 COD/m{sup 2}/day), the reductions were smaller because the unit seemed to be operating near maximum organic loading capacity. Bioassays showed the LC{sub 50} generally increased after ASBF treatment, indicating toxicity reduction. The bioassays done on the samples treated by clinoptilolite showed further increase in the LC{sub 50} for the ASBF unit effluent indicating that ammonia may be a toxic fraction in the effluent. The kinetic constants were analyzed using the models proposed by Eckenfelder (2) and Korengay and Andrews (3). The proportionality constant for the former was equal to 0.00458 m{sup 3}/m{sup 2}/day. The area capacity constant for the latter was 22.8 g/m{sup 2}/day and the saturation constant 88.8 mg/{ell}. A model proposed by Kincannon and Stover (4) was also used to predict the kinetic constants. From this model the maximum specific substrate removal rate was determined to be 33.3 g/m{sup 2}/day and the proportionality constant was equal to 23.7 g/m{sup 2}/day.

Research Organization:
US Department of Energy (USDOE), Washington DC (United States); Amoco Production Co., Houston, TX (United States); Conoco, Inc., Stamford, CT (United States)
OSTI ID:
377171
Report Number(s):
CONF-9509296-; ON: DE96001221; TRN: 96:004054-0006
Resource Relation:
Conference: 2. international petroleum environmental conference: environmental issues and solutions in petroleum exploration, production, and refining, New Orleans, LA (United States), 25-27 Sep 1995; Other Information: PBD: 1995; Related Information: Is Part Of Environmental issues and solutions in petroleum exploration, production and refining; Sublette, K.L. [ed.]; PB: 1078 p.
Country of Publication:
United States
Language:
English