SciTech Connect

Title: Ultrasonic velocity-porosity relationships for sandstone analogs made from fused glass beads

Ultrasonic velocity-porosity relationships for sandstone analogs made from fused glass beads Using fused glass beads, the authors have constructed a suite of clean sandstone analogs, with porosities ranging from about 1 to 43%, to test the applicability of various composite medium theories that model elastic properties. They measured P- and S-wave velocities in dry and saturated cases for their synthetic sandstones and compared the observations to theoretical predictions of the Hashin-Shtrikman bounds, a differential effective medium approach, and a self-consistent theory known as the coherent potential approximation. The self-consistent theory fits the observed velocities in these sandstone analogs because it allows both grains and pores to remain connected over a wide range of porosities. This behavior occurs because this theory treats grains and pores symmetrically without requiring a single background (host) material, and it also allows the composite medium to become disconnected at a finite porosity. In contrast, the differential effective medium theory and the Hashin-Shtrikman upper bound overestimate the observed velocities of the sandstone analogs because these theories assume the microgeometry is represented by isolated pores embedded in a host material that remains continuous even for high porosities. The authors also demonstrate that the differential effective medium theory and the Hashin-Shtrikman upper bound correctly estimate bulk moduli of porous glass more » foams, again because the microstructure of the samples is consistent with the implicit assumptions of these two theoretical approaches. « less
Authors: ; ;
Publication Date:
OSTI Identifier:37103
DOE Contract Number:W-7405-ENG-48
Resource Type:Journal Article
Data Type:
Resource Relation:Journal Name: Geophysics; Journal Volume: 60; Journal Issue: 1; Other Information: PBD: Jan-Feb 1995
Country of Publication:United States
Language:English
Subject: 58 GEOSCIENCES; 02 PETROLEUM; RESERVOIR ROCK; ELASTICITY; MICROSTRUCTURE; POROSITY; SEISMIC WAVES; WAVE PROPAGATION; DATA ANALYSIS; PETROLEUM INDUSTRY; RESEARCH PROGRAMS