skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulated and associated experimental results of CdZnTe radiation detector response for gamma-ray imaging applications

Book ·
OSTI ID:323842

Simulated and associated experimental results of a high efficiency CdZnTe (CZT) radiation detector response for gamma-ray imaging applications are presented. The model of a high efficiency semiconductor gamma ray detector takes into account several different physical phenomena involved in the detection and correction processes, namely the geometry of the irradiation, the gamma-ray`s interaction with the crystal, the physics of the semiconductor`s charge collection, the electric field distribution and the pulse height correction method. A few important decoupling assumptions allow the authors to use a one dimensional charge collection simulation with a two-dimensional field model and a full three dimensional Monte-Carlo calculation of the gamma ray interactions. The model allows calculation of charge collection and gamma ray spectra for non uniform electric field distribution in either planar, striped or pixellated detector. The model takes also into account the new CZT fast pulse correction method and its associated noise by considering the pulse height and the rise time of electron signals (Bi-Parametric spectrum) for all gamma ray interactions. Specific simulated and experimental spectra at 122 keV are presented for CZT. First, basic spectral changes are calculated for variations in crystal and detector properties like mobility, trapping lifetime and electric field profiles. Second, new experimental results of the fast pulse correction method applied to different CZT detector grades are presented. This method allows to achieve a high detection efficiency (> 80%) with a good energy resolution (< 6% FWHM) at 122 keV for a 4 x 4 x 6 mm{sup 3} CZT detector. No specific contact geometry is needed and the unusual low applied bias voltage allows to limit the aging and break voltage effects and also the dark current and its associated noise. This fast correction method is expected to be useful for medical imaging and other applications. Finally, simulated Bi-Parametric (BP) spectra expected with the fast pulse correction method according to the detector properties (electric field profiles, electron lifetime) are simulated and a qualitative comparison is provided.

OSTI ID:
323842
Report Number(s):
CONF-971201-; TRN: 99:004374
Resource Relation:
Conference: 1997 fall meeting of the Materials Research Society, Boston, MA (United States), 1-5 Dec 1997; Other Information: PBD: 1998; Related Information: Is Part Of Semiconductors for room-temperature radiation detector applications 2; James, R.B. [ed.] [Sandia National Labs., Livermore, CA (United States)]; Schlesinger, T.E. [ed.] [Carnegie Mellon Univ., Pittsburgh, PA (United States)]; Siffert, P. [ed.] [Lab. PHASE/CNRS, Strasbourg (France)]; Dusi, W. [ed.] [Inst. TESRE/CNR, Bologna (Italy)]; Squillante, M.R. [ed.] [Radiation Monitoring Devices, Inc., Watertown, MA (United States)]; O`Connell, M. [ed.] [Dept. of Energy, Washington, DC (United States)]; Cuzin, M. [ed.] [LETI/CEA, Grenoble (France)]; PB: 681 p.; Materials Research Society symposium proceedings, Volume 487
Country of Publication:
United States
Language:
English

Similar Records

An Effective Purification Process for the Nuclear Radiation Detector Tl 6 SeI 4
Journal Article · Wed Apr 18 00:00:00 EDT 2018 · Crystal Growth and Design · OSTI ID:323842

Growth of Cd0.9Zn0.1Te1-ySey Single Crystals for Room Temperature Gamma-Ray Detection
Journal Article · Tue May 04 00:00:00 EDT 2021 · IEEE Transactions on Nuclear Science · OSTI ID:323842

Thin Film Solid State Active Dosimetry
Journal Article · Fri Jul 01 00:00:00 EDT 2016 · Transactions of the American Nuclear Society · OSTI ID:323842