skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High pressure hollow electrode discharges

Conference ·
OSTI ID:323621
; ; ;  [1]
  1. Old Dominion Univ., Norfolk, VA (United States). Physical Electronics Research Inst.

Reduction of the cathode hole diameter into the submillimeter range has allowed the authors to extend the pressure range for hollow electrode discharge operation to values on the order of 50 Torr. In recent experiments with cathode holes of 0.2 mm diameter they obtained stable glow discharge operation up to approximately 900 Torr in argon. The current-voltage (I-V) characteristics of these discharges (with currents ranging from the ten`s of {micro}A to ten mA) show three distinct discharge modes: at low current, a discharge with positive differential resistivity, followed by a range with strong increase in current and reduction in voltage, and, at high current, again a resistive discharge mode. For low pressure (< 100 Torr) these modes correspond to the predischarge, hollow cathode discharge (sustained by pendulum electrons), and abnormal glow discharge, respectively. At higher pressure the discharge in the short gap system (anode-cathode distance: 0.25 mm) changes from a hollow cathode discharge to, what seems to be a pulseless partial glow discharge. In hollow cathode discharges operated in the torr range the electron energy distribution is known to be strongly non-maxwellian with a large concentration of electrons at energies greater than 30 eV. This holds also for hollow cathode discharge at high pressure and for partial discharges as indicated by the presence of strong excimer lines in the VUV spectrum of Ar-discharges at 128 nm and Xe-discharges at 172 nm. The resistive characteristic of high pressure hollow electrode discharges over a large range of current allows them to generate arrays of these discharges for use as flat panel, direct current, excimer lamps.

Sponsoring Organization:
USDOE, Washington, DC (United States)
OSTI ID:
323621
Report Number(s):
CONF-970559-; TRN: IM9911%%235
Resource Relation:
Conference: 24. IEEE international conference on plasma science, San Diego, CA (United States), 19-23 May 1997; Other Information: PBD: 1997; Related Information: Is Part Of IEEE conference record -- Abstracts; PB: 354 p.
Country of Publication:
United States
Language:
English