skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controls on fluxes of trace gases from Brazilian cerrado soils

Journal Article · · Journal of Environmental Quality
 [1];  [2]
  1. Coll. of William and Mary, Gloucester Point, VA (United States). Virginia Inst. of Marine Science
  2. Dept. of Agriculture, Riverside, CA (United States)

Tropical ecosystems play an important role in production or consumption of atmospheric trace gases including nitric oxide (NO), nitrous oxide (N{sub 2}O), carbon dioxide (CO{sub 2}), and methane (CH{sub 4}). Here the authors describe field and laboratory experiments, performed during 1994, to determine the influence of fire on processes responsible for fluxes of gases from cerrado sites burned 17 and 45 d earlier, and a control site, last burned in 1974. Burning stimulated gross N mineralization but depressed nitrification rates; however, rates were sufficient to support NO fluxes observed in a 1992 study at the same site. Extractable nutrients and fluxes of NO and N{sub 2}O from wetted and dry soils were measured prior to and for a 3-d period following burning. Over this period NO{sub 2}{sup {minus}} declined to undetectable levels; NH{sub 4}{sup +} increased, and NO fluxes remained relatively constant, suggesting that nitrifiers replaced the NO{sub 2}{sup {minus}} reduced to NO. Soils at burned and unburned sites exhibited CH{sub 4} uptake, which was inhibited by CH{sub 3}F, thereby converting soils from a strong sink to a weak source of CH{sub 4}. Carbon dioxide fluxes did not increase, and there were no detectable fluxes of N{sub 2}O following burning. In lab studies NO and N{sub 2}O emissions were inhibited by autoclaving, suggesting that nitrification was key to their production. However, addition of NO{sub 2}{sup {minus}} to autoclaved soil resulted in large fluxes of NO but no detectable N{sub 2}O, suggesting that chemodenitrification may have been responsible for NO but not N{sub 2}O production. Further research is needed to determine whether NO is produced directly by nitrifier NO{sub 2}{sup {minus}} reduction or indirectly by chemodenitrification of NO{sub 2}{sup {minus}} produced by nitrifiers.

Sponsoring Organization:
USDOE
OSTI ID:
290131
Journal Information:
Journal of Environmental Quality, Vol. 27, Issue 5; Other Information: PBD: Sep-Oct 1998
Country of Publication:
United States
Language:
English