skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interfacial electrochemistry of pyrite oxidation and flotation. 1: Effect of borate on pyrite surface oxidation

Journal Article · · Journal of Colloid and Interface Science
 [1]
  1. Univ. of Kentucky, Lexington, KY (United States)

The interfacial chemistry of pyrite is of great industrial importance in complex sulfide ore flotation, coal desulfurization, acid mine drainage mitigation, and conversion of solar energy to electrical or chemical energy. Sodium tetraborate (Na{sub 2}B{sub 4}O{sub 7}) has been widely used as an electrolyte and pH buffer in studying the interfacial electrochemistry of sulfide minerals in relation to sulfide mineral flotation. In all the previous studies published so far, borate was regarded as an inert electrolyte/pH buffer, and its reactions with the sulfide minerals were completely overlooked. In this first part of this series papers, the complicating effects of borate on the interfacial electrochemistry of pyrite have been studied. In the borate solutions, the surface oxidation of pyrite is strongly enhanced. The first and rate-determining step of the reaction between borate and pyrite has been shown to be the following irreversible reaction: FeS{sub 2} + B(OH){sub 4}{sup {minus}} {yields} FeS{sub 2} {hor_ellipsis} [B(OH){sub 4}]{sub ads} + e. This reaction appears in the voltammogram as an anodic oxidation peak at potentials of more than 0.4 V lower than the commencement of pyrite oxidation in sodium perchlorate or nitrate electrolyte solutions. As the borate concentration increases, the peak current increases linearly, while the peak potential shifts positively at 240 mV per decade. On a rotating-disc electrode, the peak becomes a plateau. The limiting current density is a linear function of the square root of the rotation speed at relatively low rotation speeds. The Tafel slope is close to 240 mV per decade and is independent of the rotation speed and borate concentration. The results indicate that charge transfer coefficient is 0.25.

DOE Contract Number:
FG22-90PC90295
OSTI ID:
238020
Journal Information:
Journal of Colloid and Interface Science, Vol. 178, Issue 2; Other Information: PBD: 25 Mar 1996
Country of Publication:
United States
Language:
English