skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A NEW DETERMINATION OF THE BINDING ENERGY OF ATOMIC OXYGEN ON DUST GRAIN SURFACES: EXPERIMENTAL RESULTS AND SIMULATIONS

Journal Article · · Astrophysical Journal
; ; ;  [1]
  1. Physics Department, Syracuse University, Syracuse, NY 13244-1130 (United States)

The energy to desorb atomic oxygen from an interstellar dust grain surface, E{sub des}, is an important controlling parameter in gas-grain models; its value impacts the temperature range over which oxygen resides on a dust grain. However, no prior measurement has been done of the desorption energy. We report the first direct measurement of E{sub des} for atomic oxygen from dust grain analogs. The values of E{sub des} are 1660 ± 60 and 1850 ± 90 K for porous amorphous water ice and for a bare amorphous silicate film, respectively, or about twice the value previously adopted in simulations of the chemical evolution of a cloud. We use the new values to study oxygen chemistry as a function of depth in a molecular cloud. For n = 10{sup 4} cm{sup −3} and G{sub 0} = 10{sup 2} (G{sub 0} = 1 is the average local interstellar radiation field), the main result of the adoption of the higher oxygen binding energy is that H{sub 2}O can form on grains at lower visual extinction A{sub V}, closer to the cloud surface. A higher binding energy of O results in more formation of OH and H{sub 2}O on grains, which are subsequently desorbed by far-ultraviolet radiation, with consequences for gas-phase chemistry. For higher values of n and G{sub 0}, the higher binding energy can lead to a large increase in the column of H{sub 2}O but a decrease in the column of O{sub 2}.

OSTI ID:
22522088
Journal Information:
Astrophysical Journal, Vol. 801, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English