skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4938823· OSTI ID:22499134
;  [1];  [2];  [3]
  1. Laboratoire de Chimie et Physique Quantiques, UMR5625, University of Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062 Toulouse (France)
  2. SUBATECH, IN2P3/EMN Nantes/University of Nantes, 4 rue Alfred Kastler, BP 20722 44307, Nantes, Cedex 3 (France)
  3. University Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain)

Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimization of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.

OSTI ID:
22499134
Journal Information:
AIP Conference Proceedings, Vol. 1702, Issue 1; Conference: ICCMSE 2015: International conference of computational methods in sciences and engineering 2015, Athens (Greece), 20-23 Mar 2015; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English