skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-158: Audiovisual Biofeedback Reduces Image Artefacts in 4DCT: A Digital Phantom Study

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4924243· OSTI ID:22494166
; ; ;  [1];  [2]
  1. University of Sydney, Sydney (Australia)
  2. Paul Scherrer Institute, Psi, Aargau (Switzerland)

Purpose: Irregular breathing motion has a deleterious impact on 4DCT image quality. The breathing guidance system: audiovisual biofeedback (AVB) is designed to improve breathing regularity, however, its impact on 4DCT image quality has yet to be quantified. The purpose of this study was to quantify the impact of AVB on thoracic 4DCT image quality by utilizing the digital eXtended Cardiac Torso (XCAT) phantom driven by lung tumor motion patterns. Methods: 2D tumor motion obtained from 4 lung cancer patients under two breathing conditions (i) without breathing guidance (free breathing), and (ii) with guidance (AVB). There were two breathing sessions, yielding 8 tumor motion traces. This tumor motion was synchronized with the XCAT phantom to simulate 4DCT acquisitions under two acquisition modes: (1) cine mode, and (2) prospective respiratory-gated mode. Motion regularity was quantified by the root mean square error (RMSE) of displacement. The number of artefacts was visually assessed for each 4DCT and summed up for each breathing condition. Inter-session anatomic reproducibility was quantified by the mean absolute difference (MAD) between the Session 1 4DCT and Session 2 4DCT. Results: AVB improved tumor motion regularity by 30%. In cine mode, the number of artefacts was reduced from 61 in free breathing to 40 with AVB, in addition to AVB reducing the MAD by 34%. In gated mode, the number of artefacts was reduced from 63 in free breathing to 51 with AVB, in addition to AVB reducing the MAD by 23%. Conclusion: This was the first study to compare the impact of breathing guidance on 4DCT image quality compared to free breathing, with AVB reducing the amount of artefacts present in 4DCT images in addition to improving inter-session anatomic reproducibility. Results thus far suggest that breathing guidance interventions could have implications for improving radiotherapy treatment planning and interfraction reproducibility.

OSTI ID:
22494166
Journal Information:
Medical Physics, Vol. 42, Issue 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English