skip to main content

SciTech ConnectSciTech Connect

Title: SU-E-J-42: Evaluation of Fiducial Markers for Ultrasound and X-Ray Images Used for Motion Tracking in Pancreas SBRT

Purpose Ultrasound tracking of target motion relies on visibility of vascular and/or anatomical landmark. However this is challenging when the target is located far from vascular structures or in organs that lack ultrasound landmark structure, such as in the case of pancreas cancer. The purpose of this study is to evaluate visibility, artifacts and distortions of fusion coils and solid gold markers in ultrasound, CT, CBCT and kV images to identify markers suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment. Methods Two fusion coils (1mm × 5mm and 1mm × 10 mm) and a solid gold marker (0.8mm × 10mm) were embedded in a tissue–like ultrasound phantom. The phantom (5cm × 12cm × 20cm) was prepared using water, gelatin and psyllium-hydrophilic-mucilloid fiber. Psylliumhydrophilic mucilloid acts as scattering medium to produce echo texture that simulates sonographic appearance of human tissue in ultrasound images while maintaining electron density close to that of water in CT images. Ultrasound images were acquired using 3D-ultrasound system with markers embedded at 5, 10 and 15mm depth from phantom surface. CT images were acquired using Philips Big Bore CT while CBCT and kV images were acquired with XVI-system (Elexta). Visual analysis was performedmore » to compare visibility of the markers and visibility score (1 to 3) were assigned. Results All markers embedded at various depths are clearly visible (score of 3) in ultrasound images. Good visibility of all markers is observed in CT, CBCT and kV images. The degree of artifact produced by the markers in CT and CBCT images are indistinguishable. No distortion is observed in images from any modalities. Conclusion All markers are visible in images across all modalities in this homogenous tissue-like phantom. Human subject data is necessary to confirm the marker type suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment.« less
; ; ; ; ;  [1] ;  [2] ; ; ;  [3]
  1. Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD (United States)
  2. Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD (United States)
  3. Department of Computer Science, Johns Hopkins University, Baltimore, MD (United States)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States