skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiation hardening in sol-gel derived Er{sup 3+}-doped silica glasses

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4932018· OSTI ID:22492710
 [1];  [1]; ; ; ;  [2]; ;  [3];  [4]
  1. Laboratoire des Solides Irradiés, UMR CEA-CNRS 7642, Ecole Polytechnique, Université Paris Saclay, 91128 Palaiseau (France)
  2. Laboratoire PhLAM (UMR CNRS 8523), IRCICA (USR CNRS 3380), CERLA - FR CNRS 2416, Université Lille 1, Villeneuve d'Ascq Cedex F-59655 (France)
  3. Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS-UPSud 8182, Université Paris Sud, 91405 Orsay (France)
  4. National Fusion Laboratory, CIEMAT, Avda Complutense 40, 28040 Madrid (Spain)

The aim of the present paper is to report the effect of radiation on the Er{sup 3+}-doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er{sup 3+}-doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′{sub δ} point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er{sup 3+} to Er{sup 2+} ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects.

OSTI ID:
22492710
Journal Information:
Journal of Applied Physics, Vol. 118, Issue 12; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English