skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the rogue waves propagation in non-Maxwellian complex space plasmas

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4935916· OSTI ID:22489890
;  [1];  [2]
  1. Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt)
  2. Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)

The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.

OSTI ID:
22489890
Journal Information:
Physics of Plasmas, Vol. 22, Issue 11; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English