skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Complexations of Ln(III) with SnS{sub 4}H and Sn{sub 2}S{sub 6}: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands

Abstract

Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ–SnS{sub 4}H)]{sub n} [Ln=La (1a), Nd (1b)] and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}nH{sub 2}O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln{sup 3+} ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]{sup 3+} units. The [SnS{sub 4}H]{sup 3−} anion chelates a [Ln(peha)]{sup 3+} unit via two S atoms and coordinates to another [Ln(peha)]{sup 3+} unit via the third S atom. As a result, the [Ln(peha)]{sup 3+} units are connected into coordination polymers [Ln(peha)(μ–SnS{sub 4}H)]{sub n} by an unprecedented tridentate μ–η{sup 1},η{sup 2}–SnS{sub 4}H bridging ligands. In 2a–2d, the Ln{sup 3+} ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]{sup 3+} units are joined by two μ–OH bridges to form a binuclear [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} unit. Behaving as a bidentate μ–η{sup 1}, η{sup 1}–Sn{sub 2}S{sub 6} bridging ligand, the Sn{sub 2}S{sub 6} unit connects [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} units into a neutral coordination polymer [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n} via the trans S atoms. The Ln{sup 3+} ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environmentsmore » in [(Ln(peha)(μ–SnS{sub 4}H)]{sub n} and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a–2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV. - Graphical abstract: Lanthanide coordination polymers concerning thiostannate ligands were prepared by the solvothermal methods, and μ{sub 3}–SnS{sub 4}H and μ–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. - Highlights: • Lanthanide coordination polymers were prepared in polyamines with higher denticity. • The μ–η{sup 1},η{sup 2}–SnS{sub 4}H and μ–η{sup 1},η{sup 1}–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. • Effect of amine on the complexation of Ln(III) with thiostannate is observed.« less

Authors:
; ; ; ; ;
Publication Date:
OSTI Identifier:
22486796
Resource Type:
Journal Article
Journal Name:
Journal of Solid State Chemistry
Additional Journal Information:
Journal Volume: 230; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0022-4596
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; AMINES; ANIONS; CHELATES; COORDINATION NUMBER; ETHYLENE; EV RANGE; LANTHANUM COMPLEXES; LANTHANUM COMPOUNDS; LIGANDS; NEODYMIUM COMPOUNDS; OPTICAL PROPERTIES; POLYMERS; SOLVENTS; STANNATES; SYNTHESIS; TIN SULFIDES

Citation Formats

Tang, Chunying, Lu, Jialin, Han, Jingyu, Liu, Yun, Shen, Yali, and Jia, Dingxian. Complexations of Ln(III) with SnS{sub 4}H and Sn{sub 2}S{sub 6}: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands. United States: N. p., 2015. Web. doi:10.1016/J.JSSC.2015.06.008.
Tang, Chunying, Lu, Jialin, Han, Jingyu, Liu, Yun, Shen, Yali, & Jia, Dingxian. Complexations of Ln(III) with SnS{sub 4}H and Sn{sub 2}S{sub 6}: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands. United States. https://doi.org/10.1016/J.JSSC.2015.06.008
Tang, Chunying, Lu, Jialin, Han, Jingyu, Liu, Yun, Shen, Yali, and Jia, Dingxian. 2015. "Complexations of Ln(III) with SnS{sub 4}H and Sn{sub 2}S{sub 6}: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands". United States. https://doi.org/10.1016/J.JSSC.2015.06.008.
@article{osti_22486796,
title = {Complexations of Ln(III) with SnS{sub 4}H and Sn{sub 2}S{sub 6}: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands},
author = {Tang, Chunying and Lu, Jialin and Han, Jingyu and Liu, Yun and Shen, Yali and Jia, Dingxian},
abstractNote = {Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ–SnS{sub 4}H)]{sub n} [Ln=La (1a), Nd (1b)] and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}nH{sub 2}O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln{sup 3+} ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]{sup 3+} units. The [SnS{sub 4}H]{sup 3−} anion chelates a [Ln(peha)]{sup 3+} unit via two S atoms and coordinates to another [Ln(peha)]{sup 3+} unit via the third S atom. As a result, the [Ln(peha)]{sup 3+} units are connected into coordination polymers [Ln(peha)(μ–SnS{sub 4}H)]{sub n} by an unprecedented tridentate μ–η{sup 1},η{sup 2}–SnS{sub 4}H bridging ligands. In 2a–2d, the Ln{sup 3+} ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]{sup 3+} units are joined by two μ–OH bridges to form a binuclear [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} unit. Behaving as a bidentate μ–η{sup 1}, η{sup 1}–Sn{sub 2}S{sub 6} bridging ligand, the Sn{sub 2}S{sub 6} unit connects [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} units into a neutral coordination polymer [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n} via the trans S atoms. The Ln{sup 3+} ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [(Ln(peha)(μ–SnS{sub 4}H)]{sub n} and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a–2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV. - Graphical abstract: Lanthanide coordination polymers concerning thiostannate ligands were prepared by the solvothermal methods, and μ{sub 3}–SnS{sub 4}H and μ–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. - Highlights: • Lanthanide coordination polymers were prepared in polyamines with higher denticity. • The μ–η{sup 1},η{sup 2}–SnS{sub 4}H and μ–η{sup 1},η{sup 1}–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. • Effect of amine on the complexation of Ln(III) with thiostannate is observed.},
doi = {10.1016/J.JSSC.2015.06.008},
url = {https://www.osti.gov/biblio/22486796}, journal = {Journal of Solid State Chemistry},
issn = {0022-4596},
number = ,
volume = 230,
place = {United States},
year = {Thu Oct 15 00:00:00 EDT 2015},
month = {Thu Oct 15 00:00:00 EDT 2015}
}