skip to main content

SciTech ConnectSciTech Connect

Title: SU-E-I-02: Characterizing Low-Contrast Resolution for Non-Circular CBCT Trajectories

Purpose: The use of non-circular scanning trajectories with optimization-basedreconstruction algorithms can be used in conjunction with non-planaracquisition geometries for axial field-of-view (FOV) extension incone-beam CT (CBCT). To evaluate the utility of these trajectories,quantitative image quality metrics should be evaluated. Low-contrastresolution (LCR) and CT number accuracy are significant challenges forCBCT. With unprecedented axial coverage provided by thesetrajectories, measuring such metrics throughout the axial range iscritical. There are currently no phantoms designed to measurelow-contrast resolution over such an extended volume. Methods: The CATPHAN (The Phantom Laboratory, Salem NY) is the current standardfor image quality evaluation. While providing several useful modulesfor different evaluation metrics, each module was designed to beevaluated in a single slice and not for comparison across axialpositions. To characterize the LCR and HU accuracy over an extendedaxial length, we have designed and built a phantom with evaluationmodules at multiple and adjustable axial positions. Results: The modules were made from a cast polyurethane resin. Holes rangingfrom 1/8 to 5/8 inch were added at a constant radius from the modulecenter into which rods of two different plastic materials were pressedto provide two nominal levels of contrast (1.0% and 0.5%). Largerholes were bored to accept various RMI plugs with known electrondensities for HUmore » accuracy evaluation. The modules can be inserted intoan acrylic tube long enough to cover the entire axial FOV and theirpositions adjusted to desired evaluation points. Conclusion: This phantom allows us to measure the LCR and HU accuracy across theaxial coverage within a single acquisition. These metrics can be usedto characterize the impact different trajectories and reconstructionparameters have on clinically relevant image quality performancemetrics. Funding was provided in part by Varian Medical Systems and NIH R01 Grants Nos. CA158446, CA182264, EB018102, and EB000225. The contents of this poster are solely the responsibility of the authors and do not necessarily represent the official view of any of the supporting organizations.« less
; ;  [1] ;  [2]
  1. The University of Chicago, Chicago, IL (United States)
  2. The Princess Margaret Cancer Centre - UHN, Toronto, ON (Canada)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States