skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4937575· OSTI ID:22486305
; ; ; ; ;  [1]; ;  [2]
  1. Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping 58183 (Sweden)
  2. Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg 41296 (Sweden)

The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

OSTI ID:
22486305
Journal Information:
Applied Physics Letters, Vol. 107, Issue 26; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English