skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resolution of the vibrational energy distribution function using a direct simulation Monte Carlo-master equation approach

Journal Article · · Physics of Fluids (1994)
DOI:https://doi.org/10.1063/1.4939517· OSTI ID:22482488
 [1]
  1. U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)

The direct simulation Monte Carlo (DSMC) method is the primary numerical technique for analysis of rarefied gas flows. While recent progress in computational chemistry is beginning to provide vibrationally resolved transition and reaction cross sections that can be employed in DSMC calculations, the particle nature of the standard DSMC method makes it difficult to use this information in a statistically significant way. The current study introduces a new technique that makes it possible to resolve all of the vibrational energy levels by using a master equation approach along with temperature-dependent transition rates. The new method is compared to the standard DSMC technique for several heat bath and shock wave conditions and demonstrates the ability to resolve the full vibrational manifold at the expected overall rates of relaxation. The ability of the new master equation approach to the DSMC method for resolving, in particular, the high-energy states addresses a well-known, longstanding deficiency of the standard DSMC method.

OSTI ID:
22482488
Journal Information:
Physics of Fluids (1994), Vol. 28, Issue 1; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-6631
Country of Publication:
United States
Language:
English

Similar Records

Monte Carlo simulation of nitrogen dissociation based on state-resolved cross sections
Journal Article · Wed Jan 15 00:00:00 EST 2014 · Physics of Fluids (1994) · OSTI ID:22482488

Velocity-Space Hybridization of Direct Simulation Monte Carlo and a Quasi-Particle Boltzmann Solver
Journal Article · Fri May 21 00:00:00 EDT 2021 · Journal of Thermophysics and Heat Transfer (Online) · OSTI ID:22482488

A new class of accelerated kinetic Monte Carlo algorithms
Technical Report · Wed Nov 30 00:00:00 EST 2011 · OSTI ID:22482488